Today

Practical Error control codes

- Internet checksum
- Hamming block code
- Parity check

Error control in the Internet stack

- Transport layer
 - Internet Checksum (IC)
 over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only
- Link layer (L2)
 - Cyclic Redundancy Check (CRC)
- Physical layer (PHY)
 - Error Control Coding (ECC), or
 - Forward Error Correction (FEC)

Checksums

- Idea: sum up data in N-bit words
 - Widely used in, e.g., TCP/IP/UDP

1500 bytes

16 bits

Stronger protection than parity

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it's the negative sum
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." RFC 791

Sending:

1.	Arrange	data	a in	16-bit wo	ords	
	–			•		

2. Put zero in checksum position, add

0001 f203 f4f5 f6f7

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

Sending:

- 1. Arrange data in 16-bit words
- 2. Put zero in checksum position, add
- 3. Add any carryover back to get 16 bits
- 4. Negate (complement) to get sum

Receiving:

1.	Arrange	data	in	16-bit	words
	<i>i</i> .	J. J. 101			

2. Checksum will be non-zero, add

f4f5 f6f7 220d

0001

f203

3. Add any carryover back to get 16 bits

+ 220d -----

4. Negate the result and check it is 0

Receiving:

- 1. Arrange data in 16-bit words
- 2. Checksum will be non-zero, add
- 3. Add any carryover back to get 16 bits
- 4. Negate the result and check it is 0

- How well does the checksum work?
 - What is the distance of the code?
 - How many errors will it detect/correct?
- What about larger errors?

Block codes

- Let's fully generalize the parity bit for even more error detecting/correcting power
- Split message into k-bit blocks, and add n-k parity bits to the end of each block:
 - This is called an (n, k) block code

How to design a block code?

- What if we repeat the parity bit 3×?
 - $P = D_1 \oplus D_2 \oplus D_3 \oplus D_4$; R = 4/7

- Flip one data bit, all parity bits flip. So $d_{min} = 4$?
 - No! Flip another data bit, all parity bits flip back to original values! So d_{min} = 2
- What happened? Parity checks either all failed or all succeeded, giving no additional information

Hamming (7, 4) code

Hamming (7, 4) code: d_{\min}

- Change one data bit, either:
 - \Rightarrow Two P_i change, or
 - Three P_i change
- Change two data bits, either:
 - Two P_i change, or
 - One P_i changes

 d_{\min} = 3: Detect 2 bit errors, correct 1 bit error

Hamming (7, 4): Correcting One Bit Error

 Infer which corrupt bit from which p parity checks fail:

- P₁ and P₂ fail ⇒ Error in D₁

- P₂ and P₃ fail ⇒ Error in D₂
 P₁, P₂, & P₃ fail ⇒ Error in D₃
 P₁ and P₃ fail ⇒ Error in D₄
- What if just one parity check fails?
 - Then there are multiple errors

Summary: Higher rate (R = 4/7) code correcting one bit error

Two-dimensional parity

- Break up data into multiple rows
 - Parity bit across each row (p_i)
 - Parity bit down each column (q_i)
 - Add a parity bit *r* covering row parities

$$p_{j} = d_{j,1} \oplus d_{j,2} \oplus d_{j,3} \oplus d_{j,4}$$

$$q_{j} = d_{1,j} \oplus d_{2,j} \oplus d_{3,j} \oplus d_{4,j}$$

$$r = p_{1} \oplus p_{2} \oplus p_{3} \oplus p_{4}$$

This example has rate 16/25:

Two-dimensional parity: Properties

- Flip 1 data bit, 3 parity bits flip
- Flip 2 data bits, ≥ 2 parity bits flip
- Flip 3 data bits, ≥ 3 parity bits flip
- Therefore, d_{min} = 4, so
 Can detect ≤ 3 bit errors

 - Can correct single-bit errors (how?)
 - d = 4 because some 4 bit changes that lead to a new codeword, but not 3 or fewer bit changes
 - Single bit errors are corrected by identifying the row/column that don't match up

- 2-D parity detects most four-bit errors
 - Example exception: any square of d values