Today

Practical Error control codes
* Internet checksum
« Hamming block code
 Parity check

Error control in the Internet stack

Transport layer
— Internet Checksum (IC) Y Y

over TCP/UDP header, data ¢

TCP header
Network layer (L3) , »

— IC over IP header only

IC
IP header

IP payload

Link layer (L2)
— Cyclic Redundancy Check
(CRC)

LL header o 11 CRC

Physical layer (PHY)
— Error Control Coding (ECC), or
— Forward Error Correction (FEC)

Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

16

1
500 bytes bits

« Stronger protection than parity

Slide Borrowed From CSE 461 University of Washington

Internet Checksum

e Sum is defined in 1s complement
arithmetic (must add back
carries)

— And it's the negative sum

* “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words ...” — RFC 791

Internet Checksum

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
£203
£4f£f5
f6£7

Internet Checksum

Sending:

1.
2.

Arrange data in 16-bit words

Put zero in checksum position,
add

. Add any carryover back to get 16

bits

. Negate (complement) to get sum

0001
£203
£4f£f5
f6£7
+(0000)

Internet Checksum

Receiving:
1. Arrange data in 16-bit words 0001
2. Checksum will be non-zero, add ggg
fef7
3. Add any carryover back to get 16 + 220d
bits

4. Negate the result and check itis 0

Internet Checksum

Recelving:

1. Arrange data in 16-bit words 0001
2. Checksum will be non-zero, add aos
f6£7

3. Add any carryover back to get 16 220
bits 2ff£d
fffd

4. Negate the result and check it is O o2
ffff

Internet Checksum

« How well does the checksum
work?
— What is the distance of the code?

— How many errors will it
detect/correct?

« What about larger errors?

Block codes

« Let’'s fully generalize the parity bit for even more error
detecting/correcting power

« Split message into k-bit blocks, and add n—k parity bits to
the end of each block:

— This is called an (n, k) block code

k bits n—k bits
A, A

[\

‘ data bits ‘ parity bits

\ J

codeword: n bits

How to design a block code?

« What if we repeat the parity bit 3x? ‘ D,D,D,D, ‘p p p‘
- P=D,eD,eD,eD,; R=4/7

— Flip one data bit, all parity bits flip. Sod_. =47
* No! Flip another data bit, all parity bits flip back to
original values! Sod . =2

— What happened? Parity checks either all failed or all
succeeded, giving no additional information

11

Hamming (7, 4) code

k=4bits n- k=3 bits

=N

Hamming (7, 4) code: d__.

 Change one data bit, either:
=> Two P, change, or
— Three P, change

« Change two data bits, either:
— Two P, change, or
> One P, changes

d . = 3: Detect 2 bit errors, correct 1 bit error

m

Hamming (7, 4): Correcting One Bit Error

Infer which corrupt bit from which D.
parity checks fail:

P, and P, fail = Errorin D,
P, and P3 fail = Errorin D,
P1, P2, & P3 fail = Errorin D3
P, and P3 fail = Errorin D,
D,:all --
What if just one parity check fails?
— Then there are multiple errors

Summary: Higher rate (R = 4/7) code correcting one bit
error

Two-dimensional parity

* Break up data into multiple rows
— Parity bit across each row (p))
— Parity bit down each column (q)

— Add a parity bit r covering row '
parities

p=d, &d, ©d, &d,
q=d,0dy, @©d; @d, |d, d, d,

r=p, ®p, ®p, ©Sp,

Q

QL
QILQL] LS
N

QILK] IS
QLIS
1SN

IoH B ke

14_Pq I

* This example has rate 16/25:

Q
Q
Q
Q

e Py |

4.1 42 4.3

Two-dimensional parity: Properties

Flip 1 data bit, 3 parity bits flip
Flip 2 data bits, = 2 parity bits flip
Flip 3 data bits, 2 3 parity bits flip

Therefore, d_. = 4, soO
— Can detelt'k 3 bit errors
— Can correct single-bit errors (how?)

—d = 4dbecause some 4 bit cBan%eS
lead to a new codeword, but not
or fewer bit changes

— Single bit errors are corrected b
idergt'ﬁyllpng the row/column tﬁat gon’t
match’up

2-D parity detects most four-bit errors
- E)ﬁamé)le exception: any square of d
value

16

